127 research outputs found

    Metabolomic profiling of macrophages determines the discrete metabolomic signature and metabolomic interactome triggered by polarising immune stimuli

    Get PDF
    Priming and activating immune stimuli have profound effects on macrophages, however, studies generally evaluate stimuli in isolation rather than in combination. In this study we have investigated the effects of pro-inflammatory and anti-inflammatory stimuli either alone or in combination on macrophage metabolism. These stimuli include host factors such as IFNγ and ovalbumin-immunoglobulin immune complexes, or pathogen factors such as LPS. Untargeted LC-MS based metabolomics provided an in-depth profile of the macrophage metabolome, and revealed specific changes in metabolite abundance upon either individual stimuli or combined stimuli. Here, by factoring in an interaction term in the linear model, we define the metabolome interactome. This approach allowed us to determine whether stimuli interact in a synergistic or antagonistic manner. In conclusion this study demonstrates a robust approach to interrogate immune-metabolism, especially systems that model host-pathogen interactions

    Differentiation of functional osteoclasts from human peripheral blood CD14+ monocytes

    Get PDF
    Osteoclasts (OCs) are bone-resorbing cells that play a pivotal role in skeletal development and adult bone remodeling. Several bone disorders are caused by increased differentiation and activation of OCs, so the inhibition of this pathobiology is a key therapeutic principle.Two key factors drive the differentiation of OCs from myeloid precursors: macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL). Human circulating CD14+ monocytes have long been known to differentiate into OCs in vitro. However, the exposure time and the concentration of RANKL influence the differentiation efficiency. Indeed, protocols for the generation of human OCs in vitro have been described, but they often result in a poor and lengthy differentiation process. Herein, a robust and standardized protocol for generating functionally active mature human OCs in a timely manner is provided. CD14+ monocytes are enriched from human peripheral blood mononuclear cells (PBMCs) and primed with M-CSF to upregulate RANK. Subsequent exposure to RANKL generates OCs in a dose- and time-dependent manner. OCs are identified and quantified by staining with tartrate acid-resistant phosphatase (TRAP) and light microscopy analysis. Immunofluorescence staining of nuclei and F-actin is used to identify functionally active OCs. In addition, OSCAR+CD14− mature OCs are further enriched via flow cytometry cell sorting, and OC functionality quantified by mineral (or dentine/bone) resorption assays and actin ring formation. Finally, a known OC inhibitor, rotenone, is used on mature OCs, demonstrating that adenosine triphosphate (ATP) production is essential for actin ring integrity and OC function. In conclusion, a robust assay for differentiating high numbers of OCs is established in this work, which in combination with actin ring staining and an ATP assay provides a useful in vitro model to evaluate OC function and to screen for novel therapeutic compounds that can modulate the differentiation process

    In Vivo V L

    Full text link

    Double-negative-2 B cells are the major synovial plasma cell precursor in rheumatoid arthritis

    Get PDF
    B cells are key pathogenic drivers of chronic inflammation in rheumatoid arthritis (RA). There is limited understanding of the relationship between synovial B cell subsets and pathogenic antibody secreting cells (ASCs). This knowledge is crucial for the development of more targeted B-cell depleting therapies. While CD11c+ double-negative 2 (DN2) B cells have been suggested as an ASC precursor in lupus, to date there is no proven link between the two subsets in RA. We have used both single-cell gene expression and BCR sequencing to study synovial B cells from patients with established RA, in addition to flow cytometry of circulating B cells. To better understand the differentiation patterns within the diseased tissue, a combination of RNA-based trajectory inference and clonal lineage analysis of BCR relationships were used. Both forms of analysis indicated that DN2 B cells serve as a major precursors to synovial ASCs. This study advances our understanding of B cells in RA and reveals the origin of pathogenic ASCs in the RA synovium. Given the significant role of DN2 B cells as a progenitor to pathogenic B cells in RA, it is important to conduct additional research to investigate the origins of DN2 B cells in RA and explore their potential as therapeutic targets in place of the less specific pan-B cells depletion therapies currently in use

    Multifunctional cytokine production reveals functional superiority of memory CD4 T cells

    Get PDF
    T cell protective immunity is associated with multifunctional memory cells that produce several different cytokines. Currently, our understanding of when and how these cells are generated is limited. We have used an influenza virus mouse infection model to investigate whether the cytokine profile of memory T cells is reflective of primary responding cells or skewed towards a distinct profile. We found that, in comparison to primary cells, memory T cells tended to make multiple cytokines simultaneously. Analysis of the timings of release of cytokine by influenza virus‐specific T cells, demonstrated that primary responding CD4 T cells from lymphoid organs were unable to produce a sustained cytokine response. In contrast CD8 T cells, memory CD4 T cells, and primary responding CD4 T cells from the lung produced a sustained cytokine response throughout the restimulation period. Moreover, memory CD4 T cells were more resistant than primary responding CD4 T cells to inhibitors that suppress T cell receptor signalling. Together, these data suggest that memory CD4 T cells display superior cytokine responses compared to primary responding cells. These data are key to our ability to identify the cues that drive the generation of protective memory CD4 T cells following infection

    Defining the structure of the NF-ĸB pathway in human immune cells using quantitative proteomic data

    Get PDF
    The NF-ĸB transcription factor is a critical regulator of immune homeostasis and inflammatory responses and is a critical factor in the pathogenesis of inflammatory disease. The pathways to NF-ĸB activation are paradigms for signal-induced ubiquitination and proteasomal degradation, control of transcription factor function by subcellular localisation, and the control of gene transcription and physiological processes by signal transduction mechanisms. Despite the importance of NF-ĸB in disease, the NF-ĸB pathway remains unexploited for the treatment of inflammatory disease. Our understanding of NF-ĸB comes mostly from studies of transgenic mice and cell lines where components of the pathway have been deleted or over expressed. Recent advances in quantitative proteomics offer new opportunities to understand the NF-ĸB pathway using the absolute abundance of individual pathway components. We have analysed available quantitative proteomic datasets to establish the structure of the NF-ĸB pathway in human immune cells under both steady state and activated conditions. This reveals a conserved NF-κB pathway structure across different immune cell lineages and identifies important differences to the current model of the NF-ĸB pathway. These include the findings that the IKK complex in most cells is likely to consist predominantly of IKKβ homodimers, that the relative abundancies of IκB proteins show strong cell type variation, and that the components of the non-canonical NF-ĸB pathway are significantly increased in activated immune cells. These findings challenge aspects of our current view of the NF-κB pathway and identify outstanding questions important for defining the role of key components in regulating inflammation and immunity

    Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology

    Get PDF
    Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes

    Changes in plasma itaconate elevation in early rheumatoid arthritis patients elucidates disease activity associated macrophage activation

    Get PDF
    Objective. To characterize changes in the plasma metabolic profile in newly diagnosed rheumatoid arthritis (RA) patients upon commencement of conventional disease modifying anti-rheumatic drug (cDMARD) therapy. Methods. Plasma samples collected in an early RA randomized strategy study (NCT00920478) that compared clinical (DAS) disease activity assessment with musculoskeletal ultrasound assessment (MSUS) to drive treatment decisions were subjected to untargeted metabolomic analysis. Metabolic profiles were collected at pre- and 3 months post commencement of non-biologic cDMARD. Metabolites that changed in association with changes in the DAS44 score were identified at the 3 month timepoint. Results. A total of ten metabolites exhibited a clear correlation with reduction in DAS44 score following cDMARD commencement, particularly itaconate, its derived anhydride and a derivative of itaconate coA. Increasing itaconate correlated with improved DAS44 score and decreasing levels of CRP. Conclusion. cDMARD treatment effects invoke consistent changes in plasma detectable metabolites, that in turn implicate clinical disease activity with macrophages. Such changes inform RA pathogenesis and reveal for the first time a link between itaconate production and resolution of an inflammatory disease in humans. Quantitative metabolic biomarker based tests of clinical change in state are feasible and should be developed around the itaconate pathway
    corecore